Blog Archives

Johtamisen tekoälyllä kilpailuetua

Seuraavassa avaan lyhyesti tekoälyn toimintaperiaatteita ja selitän, miksi johtamisen tekoäly luo merkittävän kilpailuedun.

Tekoälyn soveltaminen johtamisessa mahdollistaa viisaampien päätöksien tekemisen ja ennakoivan johtamisen. Kyse ei ole pelkästään ongelmien välttämisestä, vaan ennen kaikkea ihmisten voimavarojen paremmasta hyödyntämisestä työntekijöiden ja organisaation parhaaksi.

Tekoäly (artificial intelligence) voidaan jakaa kahteen yläluokkaan ja kolmeen osa-alueeseen. Tekoälyn kaksi yläluokkaa ovat data- ja malliohjattu tekoäly. Dataohjatussa tekoälyssä käytetään algoritmeja datan syy-seurausvaikutusten tulkintaan sekä ennustamiseen. Malliohjatussa tekoälyssä tavoitteena on kontekstin syvällisen ymmärryksen (mallin) avulla muuttaa käyttäytymistä, jotta voidaan saavuttaa parempi tulevaisuus. Malliohjattu tekoäly perustuu vahvistetun oppimisen algoritmeihin (reinforcement learning). Dataohjatussa tekoälyssä käytetään ei-ohjattua (unsupervised) ja ohjattua oppimista (supervised learning).

Tekoalyn_periaate

Ei-ohjattu oppiminen (unsupervised learning) hyödyntää luokittelematonta dataa. Algoritmien avulla voidaan tunnistaa datassa olevia asioita ja indikaatioita, jotka liittyvät johonkin ilmiöön. Datasta voidaan selvittää, mitkä tapahtumat liittyvät todennäköisesti esimerkiksi sairauspoissaolojen kasvuun, työkyvyttömyyteen tai ei-toivottuun irtisanoutumiseen. Sen avulla saadaan suosituksia; esimerkiksi urakehityksessä tiettyyn koulutukseen hakeutuneille suositellaan jatkokursseja, jotka on koettu hyödyksi. On selvää, että organisaatiokontekstin ymmärrys on tärkeää, sillä ei-ohjattu oppiminen ei itsessään ymmärrä asiayhteyksiä ja syy-seuraussuhteiden kausaalisuutta.

Ohjattu oppiminen (supervised learning) on datan hyödyntämistä tapauksissa, joissa tieto on luokiteltua ja lopputulos tiedetään. Analysoinnissa käytetään regressiotarkasteluja, jotka ovat monelle tuttuja mm. Excelin kautta. Ohjattu oppiminen hakee datapisteitä noudattavan funktion, jonka avulla voidaan ennustaa tulevaa kehitystä. Esimerkiksi työelämän laadun (QWL) ja sairauspoissaolojen välillä on havaittu yhteys: työelämän laadun huonontuessa sairauspoissaolot lisääntyvät. Voidaan siis hakea funktio, joka mallintaa työelämän laadun yhteyttä sairauspoissaoloihin ja siten ennustaa sairauspoissaolojen kehitystä mittaamalla työelämän laatua.

Vahvistettu oppiminen (Reinforcement learning) opastaa käyttäytymään siten, että lopputulos on parempi. Se siis vahvistaa käyttäytymistä, jonka avulla saadaan optimaalinen lopputulos pitkällä aikavälillä. Vahvistettu oppiminen vaatii luotettavan mallin, joka simuloi organisaation toimintaa ja johtamisen vaikutusta siihen. Mallia voidaan ”pyörittää” eteenpäin, jolloin nähdään, miten johtamiskäyttäytyminen vaatii tiettyjä uhrauksia (aikaa ja kuluja), mutta järkevästi toteutettu johtaminen tuo tulosta myöhemmin ja tämä tulos maksaa moninkertaisesti takaisin (vrt. ROI eli return on investment). Vahvistetun oppisen tekoäly siis mallintaa kontekstin ROI vaihtoehtoja, vahvistaen sellaista käyttäytymistä (strategiaa), joka johtaa maksimaaliseen takaisinmaksuun eli tuottoon pitemmällä aikavälillä.

Kaikki tekoälyn osa-alueet voidaan valjastaa johtamisen avuksi esimerkiksi seuraavasti: ei-ohjattu tekoäly seuraa datavirtaa ja indikoi, että jossain ryhmässä on henkilöstön suorituskyky heikentynyt. Pulssityyppinen henkilöstökysely käynnistyy tällöin automaattisesti ja mittaa työntekijöiden kokeman työelämän laadun. Tiedot menevät tekoälyavusteiseen simulaatioon, jossa esimies voi tekoälyltä kysyä, mitä johtamisaktiviteetteja kannattaa toteuttaa, jotta saadaan paras takaisinmaksu ROI tuottona. Ennakoiva johtaminen parantaa työyhteisön työelämän laatua, jolloin tuottavuus paranee ja uhkaavat sairauspoissaolot vältetään.

Mitä tämä tarkoittaa yrityksen kilpailukyvyssä? Yksi tuottavuuden suurimpia haasteita on esimiestoiminnan huono laatu ja suuri hajonta. Vain erittäin harva organisaatio on kyennyt ratkaisemaan tämän ongelman. Yritys, joka käyttää tekoälyä johtamisen apuna, kykenee nostamaan esimiestoiminnan laatua merkittävästi. Työelämän laadun parantuminen tuotantotekijänä nostaa tehollista työaikaa kuormittamatta työntekijöitä. Yrityksen tehollisen työtunnin kustannus voi näin olla yli 20% alhaisempi kuin kilpailijalla, vaikka yritys maksaa henkilöstölleen parempaa palkkaa (vrt. Time-Driven-Activity-Based-Cost, BSC, Kaplan). Lisäksi tyytyväisemmät asiakkaat tuovat kilpailuetua, sillä henkilöstön kokema työelämän laatu parantaa asiakaskokemusta.

Rohkaisen johtajia käynnistämään tekoälyn “evoluution” omassa organisaatiossa. Dataa pitää kerätä ja ymmärtää aiempaa paremmin. Ihan ensimmäiseksi tekoälyn hyödyntäminen vaatii tiedolla-johtamisen tason nostoa ja seuraavaksi rohkeutta lähteä kokeilemaan ja oppimaan.  

Lisätietoa marko.kesti(at)ulapland.fi

Mullistavat HR-teknologiat

Josh Bersinin raportissa on hyvää asiaa tulevista mullistavista HR-teknologioista. Näkemykseni on yhtenevä ja perustelen muutamia keskeisiä blogissani.

Yritysten henkilöstöjohtamisessa korostuu jatkossa tiimien suorituskyvyn kehittäminen. Tiimien suorituskyvyn ongelmat on tiedostettu jo usean vuoden ajan. Suurin syy on esimiestoiminnan huono laatu ja laadun suuri hajonta. Karkeasti ottaen 20 % esimiehistä taitaa esimiestyön, 60 % omaa merkittävää kehittämispotentiaalia ja lopulla 20 % on esimiestyössä vakavia ongelmia. Sama hajonta on tiimien suorituskyvyssä. Nyt haetaan siis uusia ratkaisuja tiimien suorituskyvyn parantamiseen.

“Companies want management tools that help enable and empower teams, drive team-centric engagement and performance, and support agile, networkfocused HR practices.” toteaa Bersin.

Olen tutkinut esimiestoiminnan laadun hajontaa ja selvittänyt sen juurisyytä. Yksi oleellinen syy on esimiesten huono osaaminen ihmisten johtamisessa. Vain harva esimies osaa hyviä ihmisten johtamisen käytäntöjä. Ne esimiehet, jotka eivät osaa esimieskäytäntöjä, eivät niitä myöskään toteuta käytännössä. Esimiesten johtamistaidoissa on samankaltainen hajonta kuin tiimien suorituskyvyssä. Tiimien suorituskykyä olen mitannut työyhteisön kokemalla Työelämän Laadun indeksillä (QWL, Quality of Working Life), jossa suorituskyky määräytyy motivaatioteorian mukaan.

Voidaanko esimiesten osaamisongelma ratkaista kouluttamalla esimiehille hyviä ihmisten johtamisen käytäntöjä? Ei voida, koska ongelma on pirullinen (wicked). Pirullisen siitä tekee se, että ne esimiehet, jotka tarvitsisivat ihmisten johtamistaitoja, eivät koe niitä tarvitsevansa. Heiltä puuttuu oppimiseen vaadittava motivaatio. Vaikka he käyvät koulutuksissa, johtamiskäyttäytyminen ei muutu. Heidän mielestä ihmisten johtamiskäytännöt syövät arvokasta työaikaa, joka kannattaa mieluummin käyttää tuloksen tekemiseen. Heillä on vahva käsitys (bias), että heidän toteuttama tulosjohtamisen malli on hyvä, ja syyt tiimin työhyvinvoinnin ja suorituskyvyn ongelmiin ovat heidän mielestä muualla – tekijöissä, joihin he eivät voi vaikuttaa.

Ongelma voidaan ratkaista uusilla HR-teknologioilla, jotka mahdollistavat seuraavat asiat:

  • tiimin työelämän laatu tehdään näkyväksi jatkuvatoimisella mittauksella (continuous QWL measurement)
  • tekoälyavusteinen simulaatio opettaa kokemuksellisesti paremman johtamismallin (redefining leadership mind-set)

Suorituskyvyn jatkuva parantaminen on monessa organisaatiossa tavoitteena. Jatkuva parantaminen on tehotonta, mikäli ongelmiin reagoidaan liian myöhään. Tehokas jatkuva parantaminen vaatii jatkuvaa henkilöstön näkemysten huomioimista, jolloin ongelmia voidaan ratkaista nopeasti ja ennakoivasti. Tuloshyödyt ovat niin merkittäviä, että jatkuva QWL-mittaus tulee yleistymään nopeasti. Aluksi se voisi tarkoittaa kuukausittain toteutettavaa henkilöstökyselyä. Kysymyksiä on vain muutamia ja niillä mitataan henkilöstön kokemuksia työelämän laadun tekijöistä.

When companies start implementing continuous performance management, they often realize that feedback and engagement survey systems should be connected to the process. … To do this effectively, organizations need a set of tools that facilitate continuous listening, which goes well beyond annual surveys.” toteaa Bersin

Työelämän laatu on aineeton tuotantotekijä. Se on tuotantotekijänä vähintään yhtä tärkeä kuin henkilöstömäärä. Työelämän laatu linkittyy asiakastyytyväisyyteen, innovatiivisuuteen sekä yrityksen talouteen henkilöstövoimavarojen tuotantofunktion avulla. Jatkuvatoiminen tiimin työelämän laadun mittaus nostaa esimiestoiminnan laadun ja tuottavuuden ongelmat esille. Samalla se automaattisesti pelillistää esimiestoimintaa, sillä rationaalinen esimies haluaa kokeilla, miten oma vuorovaikutusjohtaminen vaikuttaa tiimin kokemaan työelämän laatuun. Esimiehen huomio siirtyy tuloksesta ihmisten johtamiseen ja tuloksen parantuminen tulee pienellä viiveellä, kuten simulaatio opettaa.

“Let me add another hot trend that most people don’t understand yet. I am now convinced that virtual and augmented reality (VR and AR) are going to be big in the learning and performance support market.” toteaa Bersin

Olemme kehittäneet tekoälyavusteisen simulaatiopelin, joka opettaa esimiehille ihmisten johtamista ja sen vaikutuksia talouteen ja työelämän laatuun. Simulaatiomaailma (augmented reality) on luotu johtamisen peliteorian ja henkilöstötuottavuuden analytiikan avulla. Simulaatioon on kytketty tekoäly (artificial intelligence, AI). Se analysoi erilaisia vaihtoehtoja esimiehen puolesta ja ehdottaa sitten parhaita, joilla saadaan kestävää kilpailuetua. Ihminen tarvitsee apua nimenomaan pitkän aikavälin vaikutusten ymmärtämiseen. Ilman tekoälyn apua ihminen on taipuvainen tekemään hätiköityjä päätöksiä omien oletusten mukaan. Organisaation suorituskyvyn johtamisessa nämä oletuksiin perustuvat käyttäytymismallit (biases) ovat usein huonoja pitemmällä aikajänteellä. Suorituskyvyn parantaminen onnistuu parhaiten, kun ihmisellä on apuna tekoälyn kyky nähdä pitemmälle tulevaisuuteen.

Lähteet

Bersin J. (2018). HR Technology Disruptions for 2018: Productivity, Design, and Intelligence Reign. Deloitte. http://marketing.bersin.com/rs/976-LMP-699/images/HRTechDisruptions2018-Report-100517.pdf

Kesti, M. (2018).  Architecture of Management Game for Reinforced Deep Learning, Intelligent Systems Conference 2018 6-7 September 2018 | London, UK. (conference paper, not yet published)

Kesti M. (2018). Henkilöstötuottavuuden tutkimusohjelma. Tiedolla johtamisen hanke.